Data Lake Simple Architecture and AML (Anti Money Laundering) Use Case


Use Case: AML Recurrent Machine Learning
Input 1:
Client Transactions, Client Profile, AML Relevant Categorical or Continuous Features, Labeled Targets (Red Flag/STR Cases Flag)
Input 2 (Optional):
Data Augmentation -> Enrich Red Flag/STR Cases Flag
Process
a)       Training Data vs Validation Data
b)      Model Configuration/Building  (Keras Tensorflow)
c)       Mini Batch Training and Accuracy Performance Parameters Tuning
d)      Red Flags/STR Cases Flags Prediction
e)      Users Feedbacks and Enhanced learning

Related Posts

One thought on “Data Lake Simple Architecture and AML (Anti Money Laundering) Use Case

Comments are closed.